
TJHSST Computer Systems Research Lab 2019
Senior Research

Using Reinforcement Learning for Real-Time
Trajectory Planning of Aerial Multi Agent Systems
Arya Kumar, Alan Zheng

Abstract
Control of aerial multi-agent systems, or drone swarms, is an open problem with many applications in rescue
operations and defense. We find that Reinforcement Learning approaches, particularly Proximal Policy Optimiza-
tion, are capable of real-time trajectory planning for these systems. We developed a real-time simulator based
on the onboard firmware (CFsim), and applied existing control models, like Particle Field Controllers (PFCs). Our
approach was able to extend PFCs to model an arbitrary number of constraints, such as battery life, time, and
collision avoidance. We show that our approach is stable and performing it by providing a real-world demo using
Crazyflie Unmanned Aerial Vehicles (UAVs or drones), and a Vicon Motion Capture System.

Keywords
Machine Learning — Reinforcement Learning — Trajectory Planning — Aerial Systems — Multi-agent Systems

Contents

1 Introduction 1

2 Simulation Methods 1

2.1 Physics Simulator . 1
Requirements • Computation • Visualization

2.2 RL Architecture . 2
Algorithm choice • Environment Structure • Implementation •
Training Goals

3 Simulation Results and Discussion 4

4 Demonstration 4

5 Conclusions and Open Questions 5

6 Acknowledgments 5

References 6

1. Introduction
Across industries, there is a major push to transition from

large, expensive, individual drones, to small drone swarms[1].
This is due to their high maneuverability, small size, low
hardware costs, high fault tolerance, and emergent behavior[2].
Two major impediments to using UAVs concern path planning
and autonomy. Solutions to problems that require perfect
information about the entire environment are unrealistic for
applications such as reconnaissance, combat, and search and
rescue missions, where conditions constantly change on the
fly[3], and controlling each drone individually would not be
feasible[4]. However, examples from nature demonstrate
that this autonomy should be achievable. Swarms of insects
perform these desired behaviors with only limited knowledge
of the world around them[5], while high density flocks of

starlings outmaneuver hawks by keeping track of just seven
of their neighbors[6].

Currently, the military has demonstrated swarms of UAV
Perdix drones capable of “collective decision-making, adap-
tive formation flying, and self-healing.” [7] However, none
of this information or technology is publicly available. With
perfect information, many efficient algorithms exist for com-
puting good paths, using Ant colony based path planning [8]
and Particle Swarm Optimization [9]. These algorithms work
extremely well, and can even be programmed to make more
or less aggressive maneuvers for greater efficiency [10]. For
their light show of 1,218 Shooting Star drones at the 2018
Winter Olympics, Intel modeled the stadium in simulation,
and pre-programmed the flight paths for each drone months
in advance.[11]

Research has also begun for non-perfect information. These
most commonly use reinforcement learning or genetic algo-
rithms [12, 13] to solve problems, but results are still ongoing.

We attempt to address the hardest subset of these problems:
imperfect information, real-time trajectory planning with a
swarm of drones. We build a system that can run on-board
existing industry drones, and can easily be extended to work
with other systems and constraints.

2. Simulation Methods
The simulation involved three major components - a high

fidelity realistic physics simulator, a stable control system[14],
and a reinforcement learning architecture.

2.1 Physics Simulator
2.1.1 Requirements

Since we couldn’t afford to break costly drones as they
learn the basics of simple tasks, we wanted to train them first

Using Reinforcement Learning for Real-Time Trajectory Planning of Aerial Multi Agent Systems — 2/6

within a physics simulator. We initially tried to use Gazebo
9, which is extremely high fidelity and CUDA compliant.
However, it proved to be a problem because it was too slow,
even when GPU-accelerated. Training was extremely slow,
limiting the pace at which we could test and tune our models.

We turned towards creating our own simulator, CFFirm,
one custom-made for our specific Crazyflie training and ren-
dering purposes. After using Gazebo, we realized a couple
things:

• The CrazyFlie firmware was already doing the position
calculations

• There were SWIG libraries available to convert C to
Python bindings

• By adding in Gaussian noise, the firmware could act
as a suitable substitute for higher fidelity and accurate
simulation.

2.1.2 Computation
Using SWIG libraries, we compiled portions of the Crazyflie

firmware, such that we were able to query for future pose po-
sitions given a current pose and an action vector:

state f uture ≈ f irmware(statecurrent ,action) (1)

By avoiding costly aerodynamics modeling and using the
functions in the firmware, we created a significantly faster
simulator:

Table 1. Comparison of Simulator Speeds

Simulator Speed (compared to realtime)

Gazebo 0.47x
CFFirm 1937x

CFfirm was over 4000x faster than Gazebo.

2.1.3 Visualization
The simulator also needed an appropriate visualizer - we

turned to VisPy, a GPU accelerated high performance Python
library.

We added on features as we needed them, and the final
visualizer (Figure 1) was capable of:

1. Visualizing points with various colors, for A to B
trajectories

2. Visualizing both static and dynamic obstacles with
boxes of various colors

3. Manipulable camera views, to change the perspective
in real-time.

4. Breadcrumbs, to model the path taken by the drones

2.2 RL Architecture
2.2.1 Algorithm choice

RL algorithms are computationally expensive[15]: our
simulated drones have no labelled data and no ground truths

Figure 1. CFFirm Visualizer for DynamicObstacleEnv task

of the optimal way to avoid an obstacle or navigate to a given
point. All they know is that they must travel efficiently as a
swarm from point A to point B.

We settled on OpenAI’s Proximal Policy Optimization
(PPO) algorithm, which performs better than state-of-the-art
approaches while being simpler to implement and tune. We
find that PPO is an appropriate solution to our tasks, able to
generate favorable trajectories in real time. Its rewards-based
training makes it easy to add additional constraints when
necessary. We address the rigidity of training RL models
by providing a methodology for varying environments and
creating effective reward functions. Each drone we train has
limited knowledge about the surrounding environment; it only
knows its global position and where the obstacles directly
around it are. Because of this and the flexibility of training,
the drones are able to navigate a variety of environments, even
ones with dynamic states.

2.2.2 Environment Structure

Figure 2. General learning structure for HoverEnv task

The overall learning model (Figure 2) takes in a obser-
vation state of two coordinates, or six numbers - the current
position of the drone and its desired hover position. Next is
the reward function, which is critical in reinforcement learn-
ing. Our model is trying to maximize a cumulative reward
over some trajectory of actions:

Using Reinforcement Learning for Real-Time Trajectory Planning of Aerial Multi Agent Systems — 3/6

R(τ) =
∞

∑
t=0

γ
trt . (2)

Time t goes to infinity since we want our model not to be
fixed to a specific episode length. γ ∈ (0,1) is our discount
factor, which weights future rewards and more immediate re-
wards differently. It ensures that, under reasonable conditions,
the infinite sum converges.

Our reward function is defined as a combination of three
factors. The first two are the direction reward and the distance
reward, which have to do with the vector between the current
and desired points and helps the drone learn the general di-
rection of the trajectory. The last one is the movement cost,
which helps prevent oscillation upon arrival near the desired
point. Based on the current state and reward, the model will
generate a new action for the drone to take. Actions are in the
form of a desired velocity vector. PID Controllers on board
each drone convert from velocity vectors to motor speeds.

2.2.3 Implementation
For the actual implementation of the algorithm, we used

the Stable-Baselines library, a fork of OpenAI Baselines that
focuses on stability and performance. The implementation
had a number of configuration options:

Figure 3. PPO configuration for HoverEnv task

As indicated by the Tensorboard logs keyword, it also
integrated a number of debugging tools in the form of Tensor-
boards.

The library makes it easy to tune hyperparameters (Figure
3), and view the results on Tensorboards (Figure 4). These
debugging tools proved invaluable when models would fail
silently. Often by looking through the graphs and logs gen-
erated, we were able to determine that various parameters
needed to be adjusted.

2.2.4 Training Goals
With the core structure in place, we began a list of en-

vironments that were progressively more complicated. We
follow with a description of each environment, and some
observations, if any.

Hover Beginning at a point near (0,0) on the ground plane
(z = 0 m), hover the drone at a height of z = 1 m. To

Figure 4. Sample Tensorboard accuracy graph

achieve stable convergence at the goal point, we built a
reward function comprised of three parts. The model
was rewarded for pointing in the right direction, mini-
mizing distance to the goal, and minimizing extraneous
movement.

AtoB Travel from any arbitrary point A, to another point B.
To avoid a similar ”overfitting” of the reward function
to the task, we explored alternatives. Eventually we
settled on varied training as an alternative to a tuned
reward function. This is consistent with the discoveries
of Google Deepmind[16]

StaticObst + DynamicObst AtoB, but with obstacles in the
way. We developed a method of modeling obstacles as
positively charged conductors in a field, like a Potential
Field Controller (PFC). By providing the model with a
gradient and value of the field at the drone’s location,
the PFC was able to approximate an arbitrary number
of obstacles of any shape and size. For the purpose
of the simulation, we exclusively used cuboids aligned
with the xyz axis.

StaticSwarm For our first foray into a multi-drone simula-
tion, we initialized drones in random locations, and
tasked them with converging on the origin without
crashing into each other. This ended up being very
similar to previous obstacle based tasks - we simply
added a second layer of PFCs for other drones.

DynamicObstSwarm The AtoB task again, this time with
a swarm of drones. This simplified to the question
”can the model handle multiple PFCs at once?” We
found that it could, when we increased the size of the
network, up to 3 layers of 200 neurons, each using
ReLU activation functions.

SwarmSwap A final task, to demonstrate the versatility of
the model trained for DynamicObstSwarm. We instan-
tiated two swarms at random points, and tasked them

Using Reinforcement Learning for Real-Time Trajectory Planning of Aerial Multi Agent Systems — 4/6

Figure 5. SwarmSwapEnv shortly after instantiation

with swapping locations without crashing into each
other, or the obstacles in the way (Figure 5). Once we
had trained a model capable of this task, we considered
the simulation portion of the project complete.

3. Simulation Results and Discussion
We progressed through the simulations fairly consistently.

The primary limitation with the model was that there was no
sense of progression through time. We were unable to task a
single drone to travel through a series of waypoints because
the drone had trouble keeping track of the points that it had
already visited. Usage of LSTMs instead of simple neural
networks could help with this problem.

Another major observation was that varied training was a
valid substitute for highly tuned reward functions. By working
with a wide foray of starting positions, the model could gen-
eralize more effectively, and naturally seek optimums. This
meant that we were able to drop portions of reward functions,
such as the movement penalty from HoverEnv - given suitable
training, models were able to converge on the optimal policy
on their own.

In effect, the final policies were expansions upon their
analogs in control theory, Potential Field Controllers. PFC’s
primary limitations are that simply moving in the direction of
the gradient does not always yield an ideal path, and makes it
challenging to model additional constraints. Through tailoring

of the reward funciton to include additional incentives, like
maximizing battery life, our approach makes it easy to expand
upon controllers to tailor to situations.

4. Demonstration

Figure 6. The Demonstration Setup

In the spirit of facta non verba, after training drones in
CFFirm that could navigate all our designed environments
reliably, we started working on using our scripts to fly real-life
CrazyFlies. We used a Vicon motion capture system of 6 T40
and 4 T20 cameras to localize the drones.

Vicon Tracker software running onboard a Windows 10
machine is used to locate each drone by tracking the 4 reflec-

Using Reinforcement Learning for Real-Time Trajectory Planning of Aerial Multi Agent Systems — 5/6

tive markers on it (Figure 7). The marker configuration was
the same for each drone, and Extended Kalman Filters, or
EKFs, are used to keep track of drones from frame to frame.

Figure 7. Fully set-up Crazyflie drone

We utilized the crazyswarm software created by USC’s
ACT lab, which allows for control of up to 50 crazyflies at
once, using custom firmware that runs on board the drones.
The software uses Robot Operating System, or ROS, to tie
together pose updates from the Motion Capture system, and
Planners, written in C or Python.

Once the planner, in this case our PPO Models, determines
the correct course of action for each drone, information is sent
through rostopics to the CrazyRadio antennae, which relay
the information back to the drone through a 2MB/s 1.2GHz
wireless connection.

With the full system in action, we were able to successfully
run our models in real life, with minimal issues. We found
that the varied training led to extremely stable models that
successfully handled the inaccuracies in pose estimation from
motion capture localization.

5. Conclusions and Open Questions

Our results are relatively unique in the field of Aerial
Multi-Agent Systems. Most existing algorithms focus on per-
fect information approaches to downwash-aware controllers
(Figure 9). Our approach is novel on that it focuses on being
extendable, and is able to perform with a highly limited set of
sensor information.

The architecture is highly versatile, and has proven sta-
bility in real world demonstration. In the future, we would
attempt to connect our architecture to drones in the field. This
research only considered localization errors by adding noise
to the simulation. In practice, localization errors from SLAM,

Figure 8. StaticSwarm live demonstration

Optical flow, GPS and magnetization would have to be exam-
ined more carefully.

Future research could aim to test the algorithm on drones
that were viable for search and rescue, such as the Parrot
Bebop 2.0. It could then be expanded with Computer Vision
that could detect humans in rubble, and potentially deployed
in disaster relief situations to aid rescuers in locating survivors
after natural disasters.

Figure 9. Example of perfect information flight path
algorithms

6. Acknowledgments
We would first like to thank VICON for loaning us a free

motion capture system for this research. We would also like
to thank computer systems lab directors Peter Gabor, Patrick
White and Shane Torbert for their guidance and oversight.

Using Reinforcement Learning for Real-Time Trajectory Planning of Aerial Multi Agent Systems — 6/6

Finally, we’d like to thank our high school, Thomas Jefferson
High School for Science and Technology, for providing us
with the resources to make this project possible.

We would also like to acknowledge two part epoxy for
being our savior when we discovered that super glue is not
super.

References
[1] David Hambling. Drone swarms will change the face of

modern warfare, Oct 2017.
[2] Dalal Prieditis. Smartswarms: Distributed uavs that think,

Feb 2016.
[3] Fast lightweight autonomy (fla), Jan 2017.
[4] Suranga Hettiarachchi and William M. Spears. Dis-

tributed adaptive swarm for obstacle avoidance. Interna-
tional Journal of Intelligent Computing and Cybernetics,
2(4):644–671, 2009.

[5] Nicole Kobie. Drones inspired by insects could keep
flying even when damaged, Jan 2017.

[6] Dario Floreano and Robert J. Wood. Science, technol-
ogy and the future of small autonomous drones. Nature,
521(7553):460–466, 2015.

[7] Department of defense announces suc-
cessful micro-drone demonstration. www.
defense.gov/News/News-Releases/
News-Release-View/Article/1044811/
department-of-defense-announces-successful-micro-drone-demonstration/,
2017.

[8] Aakrati Agrawal, A.P. Sudheer, and S. Ashok. Ant
colony based path planning for swarm robots. In AIR

’15 Proceedings of the 2015 Conference on Advances in
Robotics, number 61. Association for Computing Machin-
ery (ACM), 2015.

[9] Xiaohui Hu. Particle swarm optimization. www.
swarmintelligence.org/, 2006.

[10] Alex Kushleyev, Daniel Mellinger, and Vijay Kumar. To-
wards a swarm of agile micro quadrotors. In Robotics:
Science and Systems VIII 28, 2012.

[11] Intel drone light show breaks guinness world records title
at olympic winter games pyeongchang 2018.

[12] Suranga Hettiarachchi and William M. Spears. Dis-
tributed adaptive swarm for obstacle avoidance. Interna-
tional Journal of Intelligent Computing and Cybernetics,
2(4):644–671, 2009.

[13] Chengyu Hu. Autonomous robot path planning based on
swarm intelligence and stream functions. In Evolvable
Systems: From Biology to Hardware : 7th International
Conference, ICES 2007, Wuhan, China, September 21-23,
2007 : Proceedings, pages 277–284, 2007.

[14] Yi Wei, M. Brian Blake, and Gregory R. Madey. An
operation-time simulation framework for uav swarm con-
figuration and mission planning. Procedia Computer
Science, 18:1949–1958, Jun 2013.

[15] Openai blog, Dec 2018.
[16] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lem-

mon, Josh Merel, Greg Wayne, Yuval Tassa, Tom Erez,
Ziyu Wang, S. M. Ali Eslami, Martin A. Riedmiller, and
David Silver. Emergence of locomotion behaviours in
rich environments. CoRR, abs/1707.02286, 2017.

www.defense.gov/News/News-Releases/News-Release-View/Article/1044811/department-of-defense-announces-successful-micro-drone-demonstration/
www.defense.gov/News/News-Releases/News-Release-View/Article/1044811/department-of-defense-announces-successful-micro-drone-demonstration/
www.defense.gov/News/News-Releases/News-Release-View/Article/1044811/department-of-defense-announces-successful-micro-drone-demonstration/
www.defense.gov/News/News-Releases/News-Release-View/Article/1044811/department-of-defense-announces-successful-micro-drone-demonstration/
www.swarmintelligence.org/
www.swarmintelligence.org/

	Introduction
	Simulation Methods
	Physics Simulator
	Requirements
	Computation
	Visualization

	RL Architecture
	Algorithm choice
	Environment Structure
	Implementation
	Training Goals

	Simulation Results and Discussion
	Demonstration
	Conclusions and Open Questions
	Acknowledgments
	References

